Contents

Introduction .. 1
Format .. 1
Using CPT Codes .. 1
Using CPT Modifiers ... 1
Using E/M Codes .. 1
Reimbursement Terms .. 1
Abbreviations, Acronyms, and Symbols 1
Prefixes and Suffixes .. 1
Procedural Eponyms ... 1
Surgical Terms .. 2
Anatomy Charts .. 2
CPT Lay Descriptions .. 2

Using CPT® Codes .. 3
History of CPT ... 3
The CPT Book Conventions ... 3
Format .. 4
Symbols and Appendix B ... 4
Modifiers .. 4
Glossary of Terms ... 5

Using CPT® Modifiers ... 9

Using E/M Codes .. 17
Categories and Subcategories of Service 17
Diagnosis or Management Options 26
Amount and/or Complexity of Data to Review 26
Assessing Risk .. 27

Reimbursement Terms .. 29

Clinical Abbreviations, Acronyms, & Symbols 47
Prefixes & Suffixes ... 50
Procedural Eponyms ... 63
Surgical Terms .. 73
Anatomy Charts .. 83

CPT® Lay Descriptions .. 101
Integumentary .. 123
Musculoskeletal ... 266
Respiratory ... 298
Cardiovascular ... 367
Hemic/Lymphatic .. 372
Mediastinum and Diaphragm .. 373
Digestive ... 446
Urinary ... 477
Male/Female ... 518
Maternity Care and Delivery .. 524
Endocrine ... 526
Nervous ... 562
Eye and Ocular Adnexa ... 588
Auditory ... 598
Pathology and Laboratory ... 658
Medicine ... 762
Category III .. 831
Coders' Desk Reference for Procedures

92083
A visual field test measures the extent of the field of vision as an eye fixates straight ahead, with standard illumination. Any peripheral vision loss or blind spots are documented. This code describes an extended procedure and may involve the use of specialized methods. The Goldmann perimeter may be used with at least three isopters plotted, plus a static check done within the central 30 degrees. An isopter is the outer margins of a visual field within which any particular object or stimulus should be seen. A hollow white spherical bowl device is positioned a set distance from the patient and luminous targets that differ in size and intensity are projected onto standardized background illumination, statically or kinetically. This method can test the full limit of peripheral vision and uses internationally standardized testing conditions with fixation always monitored. Fixation is the direction of gaze that allows the object’s visual image to fall on the central fovea of the retina—the area of most acute vision.

92100
In a healthy eye’s anterior chamber, aqueous humor is continually drained and renewed to maintain a constant overall pressure. Increased pressure from this fluid causes glaucoma and can lead to blindness. Serial tonometry involves multiple pressure checks over the course of a day to monitor significant peaks and acute elevations in intraocular pressure within a 24-hour period (diurnal curve). Different tonography testing equipment and techniques may be used. In Goldmann’s applanation tonometry, or the blue-light glaucoma-screening test, the patient is given a drop of fluorescein staining dye and anesthetic. The forehead and chin are supported on a headrest. A slit lamp is positioned until the tonometer probe just touches the cornea and the physician can view a limbal glow, or blue light circle. This applanation method measures the force required to flatten a certain area of the cornea, and the physician can view a limbal glow, or blue light circle. This method analyzes the measurements compared to standardized norms, adds norm comparison, and charts the field of vision as an eye fixates straight ahead, with standard illumination. The findings are recorded on a scaled strip of paper or digitally. Interpretation and report are included.

92130
In a healthy eye’s anterior chamber, aqueous humor is continually drained and renewed to maintain a constant overall pressure. Increased pressure from this fluid causes glaucoma and can lead to blindness. Indentation tonometry is a method of measuring and recording intraocular pressure. This technique uses an instrument such as a flat or weighted plunger centered within a footplate or a probe. When the probe/footplate is placed on the cornea, the plunger force required to cause a lateral movement (indentation change) or displacement of the plunger on the flattened area of the cornea is measured based on the instrument weight used or the calibrated displacement sensitivity of the plunger. The measurements convert to the intraocular pressure within the eye. The findings are recorded on a scaled strip of paper or digitally. Interpretation and report are included.

92135
This procedure involves using a laser for computerized scanning ophthalmic diagnostic imaging of the posterior segment. One type of scanning laser currently in use for early detection of glaucoma is known as a scanning laser glaucoma test (SLGT). The SLGT analyzes the nerve fiber layer in the posterior portion of the eye using a confocal scanning laser ophthalmoscope and/or polarimetry. During the examination, the patient fixates on a light. A technician aligns and focuses the scanning instrument. The retinal nerve fiber layer (RNFL), which is the only part of the retina that can alter the state of polarized light, is scanned with a low power laser beam that double-passes the RNFL. The instrument measures the change in polarization (retardation) that is directly related to the thickness of the tissue. A computer analyzes the measurements compared to standardized norms. Results are displayed and the data is stored in the computer for use as a comparison for future testing. This code reports a unilateral procedure; interpretation and report are included.

92136
Optical Coherence Biometry (OCB) is an ophthalmic diagnostic test that measures the curvature of the cornea and the depth of the anterior chamber in addition to the axial length of the eye, without ultrasound. This is done to calculate the correct intraocular lens (IOL) power for implantation in order to come as close as possible to the target refraction after surgery. The procedure is non-invasive and uses partial coherence interferometry or birefringent light, as opposed to sound, to perform the imaging. The patient focuses on a small fixation point and the imaging of the eye is achieved with an instrument using light sources at certain wavelengths. When the highest quality axial length display has been found, subsequent measurements are taken and stored in a computer, as well as automatically transferred to an IOL calculator.
program. This allows immediate and individualized computation of IOL implant options for the patient.

92140
In a healthy eye's anterior chamber, aqueous humor is continually drained and renewed to maintain a constant overall pressure. Increased pressure from this fluid causes glaucoma and can lead to blindness. In a provocative test for glaucoma, the patient is given drops to dilate the pupil, or may also be placed in a dark room, to cause the iris to fall forward in an attempt to close off the drainage angle. When the angle closes, pressure in the eye is measured for the increase in intraocular pressure since the fluid cannot drain. Increases at 10 mmHg or above are said to be indicative of risk for angle-closure glaucoma. The physician interprets the results and prepares a report. These tests are not commonly performed today and should be coded with care.

92225-92226
Ophthalmoscopy allows a complete view of the back of the eye. After the pupils have been dilated, views of the retina are seen with the indirect ophthalmoscope. The exam is extended. The direct ophthalmoscope allows the highly magnified view of the posterior portion of the retina, an indirect ophthalmoscope gives a broader view that includes the posterior and anterior retina and vitreous. An extended ophthalmoscopy can also be performed with a contact lens, three-mirror lens, or 90 diopter lens. One or both eyes are viewed and the physician sketches views of the patient's retinas and their defects. The initial exam (92225) may be insufficient for diagnosis. The follow-up is reported with 92226.

92230
Ophthalmoscopy allows a complete view of the back of the eye. This procedure is for detection of abnormalities of retinal blood vessels. The patient's eyes are dilated. The angiography begins when a small amount of fluorescein dye is injected into the arm. The dye is transported to the eye through the blood vessels. As the dye traverses the retinal vessels, the retina is viewed through the ophthalmoscope using filters that enhance the fluorescence of the eye.

92235
Ophthalmoscopy allows a complete view of the back of the eye. This procedure is for detection of abnormalities of retinal blood vessels. The patient's eyes are dilated. The angiography begins when a small amount of fluorescein dye is injected into the arm. The dye is transported to the eye through the blood vessels. As the dye traverses the retinal vessels, a motorized camera attached to an ophthalmoscope photographs a sequence, documenting the dye's progress through the vessels of the retina. Both eyes are photographed. The photographs are black and white. The circulation takes seconds, but photography continues in 10- to 30-minute intervals to check for late leakage of recirculating dye. The physician reviews the film and makes a diagnostic evaluation of the patient's retina.

92240
Ophthalmoscopy allows viewing of the eyeball's interior through the pupil. Indocyanine-green (ICG) dye fluoresces through blood and pigment and is used for detecting abnormalities in the vascular choroid, which lies between the retina and sclera. The patient's eyes are dilated. The angiography begins when a small amount of ICG is injected into the arm, and transported to the eye through the blood vessels. Rapid injection is essential. As the dye transverses the choroid, a motorized camera attached to an ophthalmoscope photographs a sequence, documenting the dye's progress through the choroidal vessels. The photography is generally performed bilaterally, but may be performed unilaterally. Photographs are in black and white. Timing for photography is determined by arm to retinal time. This is estimated at about 10 seconds in young patients and 12 to 18 seconds in older patients.

92250
Ophthalmoscopy allows a complete view of the back of the eye. The physician or technician aligns the fundus camera, which is attached to an ophthalmoscope, along the patient's optical axis after the patient's pupil has been dilated. The 35 mm camera is, in effect, a large ophthalmoscope that allows viewing of the retina and a light flash system for producing color photographs of the retina. Both eyes are photographed. The results are interpreted by the physician.

92260
The physician exerts pressure on the sclera with a spring plunger while observing with an ophthalmoscope the vessels of the optic disc. Ophthalmodynamometry gives a measurement of the relative pressures in the central retinal arteries. It is also an indirect means of assessing carotid artery flow on either side.

92265
The physician or technician applies concentric needle electrodes to the patient's extraocular muscles to record muscle actions. This procedure is mostly applied for research into eye movement.

92270
A normal retina has a predictable electrical response to light. The EOG records metabolic changes in the retinal pigment epithelium by evaluating the retina's response to light. The physician or technician places electrodes on the skin around the eye so that eye movements of both eyes can be recorded separately or together. The EOG is often used in cases where the electretinography isn't sensitive enough to pick up macular degeneration. The physician interprets the results of the test.